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ABSTRACT. We present a workflow to track icebergs in proglacial fjords using oblique time-lapse photos
and the Lucas-Kanade optical flow algorithm. We employ the workflow at LeConte Bay, Alaska, where
we ran five time-lapse cameras between April 2016 and September 2017, capturing more than 400 000
photos at frame rates of 0.5–4.0 min−1. Hourly to daily average velocity fields in map coordinates illus-
trate dynamic currents in the bay, with dominant downfjord velocities (exceeding 0.5 m s−1 intermit-
tently) and several eddies. Comparisons with simultaneous Acoustic Doppler Current Profiler (ADCP)
measurements yield best agreement for the uppermost ADCP levels (∼ 12 m and above), in line with
prevalent small icebergs that trace near-surface currents. Tracking results from multiple cameras
compare favorably, although cameras with lower frame rates (0.5 min−1) tend to underestimate high
flow speeds. Tests to determine requisite temporal and spatial image resolution confirm the importance
of high image frame rates, while spatial resolution is of secondary importance. Application of our pro-
cedure to other fjords will be successful if iceberg concentrations are high enough and if the camera
frame rates are sufficiently rapid (at least 1 min−1 for conditions similar to LeConte Bay).
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1. INTRODUCTION
Proglacial fjords act as conduits that transfer heat and mass
between glaciers and the ocean. The rates of heat and mass
transfer are affected by a number of processes, including
subglacial discharge, wind and tides (Motyka and others,
2003; Jackson and Straneo, 2016; Spall and others, 2017).
Subglacial discharge is of particular interest because it mixes
with warm saline water at depth and creates a vigorous
upwelling plume that melts glacier termini. Submarine
melting is an important component of tidewater glacier mass
balance (Truffer and Motyka, 2016), and subglacial discharge
and submarine melt are key sources of freshwater for fjords
(Moon and others, 2017). In addition, upwelling plumes trans-
port nutrients and entrain zooplankton (Arimitsu and others,
2016), thereby creating biological hotspots for sea birds and
marine mammals (e.g., Lydersen and others, 2014; Urbanski
and others, 2017). A detailed understanding of the processes
driving fjord circulation is lacking, however, due to difficulties
in observing these highly dynamic environments over long
time scales at high spatial and temporal resolutions.

Fjord circulation is typically observed with Acoustic
Doppler Current Profilers (ADCPs) that are either deployed
on moorings or operated from vessels. ADCPs deployed on
moorings provide high spatial resolution in the vertical
domain, as well as good temporal coverage and resolution.
In contrast, their horizontal coverage is limited to a single
location. Also, moorings are difficult to deploy and retrieve

in iceberg-filled waters, and may suffer damage from colli-
sions with icebergs. ADCP measurements from moving
vessels provide better spatial coverage than moorings, but
lack temporal coverage and resolution at single locations.
Spatial coverage may be limited by iceberg-rich water
during field campaigns. In general, ADCPs are unable to
capture velocities in the uppermost water layer due to side
lobe interference or draft and ringing effects (e.g., Chen
and others, 2016). Here we present a complementary
image-based tracking method to measure iceberg velocities
and use them to infer near-surface currents. Based on
oblique time-lapse photography, spatial patterns of currents
can be determined over months to years, at temporal reso-
lution on the order of minutes. Unlike ADCP measurements,
this method is well suited for iceberg-filled waters and areas
close to the calving front, with the caveat that it requires ice-
bergs as tracers. Icebergs integrate currents across their sub-
merged portion so that their velocities reflect average
currents between the water surface and their (unknown)
keel depth; wind drag above the water may further compli-
cate the relationship between ice motion and water velocity
(e.g., FitzMaurice and others, 2016). For best representation
of near-surface currents, tracked icebergs should be small,
which is typically the case in the LeConte Bay study area,
but not necessarily in other fjords.

Image-based measurement of iceberg motion/fjord circu-
lation is an emerging research field in glaciology and
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oceanography, exploiting satellite imagery (e.g., Enderlin
and Hamilton, 2014), ground-based radar imagery
(Voytenko and others, 2015; Olofsson and others, 2017)
and optical oblique photos (Schild and others, 2018). By con-
trast, image-based measurement of glacier motion has been
conducted for several decades, both on oblique photos
(e.g., Krimmel and Rasmussen, 1986; Messerli and
Grinsted, 2015; Schwalbe and Maas, 2017) and optical/
radar satellite imagery (e.g., Scambos and others, 1992;
Rignot and others, 2011; Rosenau and others, 2015; Altena
and Kääb, 2017). Compared with the relatively slow (order
of m d−1), steady and predictable flow of glaciers, fjord
surface currents are much faster (order of m s−1) and often
rapidly changing. Observing fjord circulation with time-
lapse photos therefore requires much higher frame rates
than corresponding glacier studies, which are now possible
thanks to advances in data storage capacity and computer
processing.

Running up to five cameras between April 2016 and
September 2017, we collected >400 000 images of LeConte
Bay, Alaska, at rates of at least 0.5 min−1 (one image every
2 minutes). To process and analyze the images, we developed
code based on the Python programming language and
the computer vision library OpenCV (https://opencv.org).
Specifically, we use OpenCV’s implementation of the
Lucas-Kanade tracker, a well-established optical flow algo-
rithm. In this paper, we present the image-tracking method,
address technical issues such as requisite temporal and
spatial resolution of imagery, ground truth our velocity calcu-
lations with ADCP data and demonstrate the method’s utility
by quantifying subdaily to seasonal patterns in near-surface
currents. Our results will put constraints on forthcoming
analysis of oceanographic data and hydrodynamic model-
ing efforts.

2. STUDY SITE
LeConte Bay (56.80°N, 132.45°W) is a 25 km long fjord
between Frederick Sound and LeConte Glacier in Southeast
Alaska (Fig. 1a). Forty kilometer long LeConte Glacier ranges
in elevation from sea level to 2800 m, draining 477 km2

(∼8%) of the Stikine Icefield (Kienholz and others, 2015). In
the glacier’s lowest reaches, the ice is funneled through a
narrow valley and ultimately lost by calving and submarine
melting, with submarine melting accounting for up to half
of the frontal ablation seasonally (Motyka and others,
2013). Ice speeds reach ∼25 m d−1 near LeConte’s calving
front (O’Neel and others, 2003). The proglacial fjord experi-
ences a net estuarine circulation heavily influenced by fresh-
water runoff from the glacier, which can exceed 400 m3 s−1

during rain and melt events (Motyka and others, 2003, 2013)
and result in near-glacier surface currents in excess of 1 m s−1.
Wind and semi-diurnal tides, with amplitudes exceeding
6 m during spring tides, modulate the circulation pattern.

This project focuses on the innermost ∼6 km of LeConte
Bay (Fig. 1b), where the fjord is ∼900–1500 m wide and sur-
rounded by steep granitic walls. Multibeam sonar measure-
ments from 2016 yield water depths up to 320 m and an
average depth of 170 m. Shallow fjord portions are rare,
with only 12% of the area less than 50 m deep. The fjord is
surrounded by the Stikine-LeConte Wilderness, which puts
constraints on the field experiment design. For example,
deployment of Ground Control Point (GCP) markers for
camera model calibration was not permitted.

3. DATA

3.1. Time-lapse imagery
We ran up to five time-lapse cameras simultaneously.
The cameras were placed on granitic bedrock ∼420 m
above LeConte Bay, using surveying tripods (Figs 1b, c).
We deployed four Harbortronics Time-Lapse Camera
Packages with 18 mm Canon Rebel T3 or T5 single-lens
reflex (SLR) cameras (www.harbortronics.com/Products/
TimeLapsePackage, Table 1). These time-lapse systems
consume minimal power, recharge via solar panels and
have flexible programming modes. A fifth system was
custom-built with a 28 mm Canon EOS 50D SLR camera.
Cameras 1–3 were co-located within a radius of ∼5 m
(Fig. 1c) and deployed for 18 months (April 2016–
September 2017), at frame rates of 0.5 min−1. Camera 4,
located ∼200 m to the southwest of cameras 1–3, was
deployed from April to September 2017 at a frame rate of
1 min−1. The custom-built camera 5 was placed 25 m to
the northeast of cameras 1–3 and deployed at a frame rate
of 4 min−1 during three field campaigns (April, May and
September 2017, 2 weeks in total). We refer to cameras 1–
4 as ‘low-rate’ cameras, and camera 5 as the ‘high-rate’
camera. Overall, the cameras took imagery 6–12 hours per
day (depending on daylight availability), capturing a total
of 410 000 images.

We surveyed camera locations with a geodetic-quality
GPS (Trimble NetRS) and measured camera rotation angles
to provide initial estimates for camera model calibration.
To quantify clock drift, we took photos of a handheld GPS
or GPS watch (e.g., Garmin GPSMAP, Garmin Forerunner)
while servicing the cameras, which we did every 1–6
months. To prevent power outages, we connected external
batteries to the time-lapse systems over winter.

Unlike previous projects, where the frame rate was con-
strained by storage card or film capacity, mechanical
failure of the camera shutters was our key consideration in
this project. While the Rebel T3 and T5 cameras lack official
shutter durability ratings, online sources list shutter durabil-
ities in the 50 000–100 000 frame range. We therefore
limited the maximum frame numbers to 100 000 per
camera. For the low rate cameras, 256 GB Secure Digital
(SD) storage cards allowed us to shoot at the highest possible
image resolutions (Table 1), yielding image sizes between 5
and 10 MB in .jpg format.

None of the shutters failed during deployment, but we
experienced problems with other elements of our time-lapse
systems. Most notably, two cameras began to fail to save
pictures several weeks after being serviced, apparently at
random. They eventually stopped saving pictures completely
though their shutters were still triggered. Storage cards and
timers showed no damage, identifying camera-related pro-
blems beyond shutter failure as potential causes of this behav-
ior. Additional data gaps occurred due to poor weather,
namely snow and fog, that obscured the view of the bay.

3.2 ADCP data
We collected ADCP data from ships and moorings. For the
shipborne measurements, we mounted a 600 kHz Teledyne
RDI ADCP (depth range 4–60 m, vertical resolution 2 m)
on the gunwale of an 8 m landing craft. The vessel traveled
slowly along transect 2 (Figs 1d, 2a), taking one ADCP mea-
surement per second. Onboard GPS provided vessel
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position, drift, and orientation in real-time. Completion of
each transect survey took 1–1.5 hours typically. Icebergs
and currents caused the vessel position to deviate up to
200 m from the original transect; occasionally, the transects
could not be completed due to icebergs. Overall, we used

20 transect surveys from 2016 (9–15 August) and 12 from
2017 (10–13 July), all of which overlap with imagery from
cameras 1 and 2. Four surveys from July 2017 also overlap
with footage from camera 4. Figure 2b illustrates the
average currents measured over the 32 transect surveys.

Fig. 1. (a) Landsat-8 image of LeConte Glacier, LeConte Bay, and the town of Petersburg. (b) WorldView-2 image (Ⓒ 2011, DigitalGlobe, Inc.)
of LeConte Bay and LeConte Glacier overlain by the cameras’ fields of view (colored lines). (c) Photo of cameras 1–3, which were co-located
on granitic bedrock ∼420 m above LeConte Bay. (d, e) Photos taken from cameras 4 and 3 with locations of the mooring and surveying
transects.
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An upward looking, mooring-mounted 300 kHz Teledyne
RDI ADCP was deployed from May to September 2017 near
transect 2 (Figs 1d, 2). Located at ∼100 m depth, it recorded vel-
ocities every 30 seconds at 4 m vertical resolution.
Measurements for the 4 and 8 m depth levels were discarded

due to side lobe contamination. Following collision with an
iceberg on 26 August 2017, the mooring lost its top floats,
which caused the mooring line and attached instruments to
fall and cover the ADCP. Here, we use velocity data from 10
May to 25 August only. Up to three cameras (1, 2, 4) took
photos of the mooring location during this time. Overall, there
is more than 600 hours of overlap between the two datasets.
Figure S1 shows the corresponding ADCP-derived currents.

4. METHODS

4.1. Image processing
The image processing aims to derive iceberg velocity fields in
map coordinates. We first determine displacements on the
oblique photos with OpenCV’s Shi-Tomasi corner detector
and Lucas-Kanade sparse optical flow tracking algorithms.
Using a calibrated camera model, we then project the trajec-
tories from image coordinates to map coordinates. Finally,
we filter implausible displacements and average the remain-
ing displacements over space and time.

OpenCV (https://www.opencv.org), written in C++, is at
the core of the tracking portion of our code, while the
remaining code (camera model, postprocessing) is written
in Python. The code can be run in parallel to improve pro-
cessing performance. Processing the entire dataset takes
about one week on a Linux workstation with ten Intel i7
cores, 128 GB RAM, and a dedicated 1 TB solid state drive.

The following sections provide background on the track-
ing algorithm and camera model, and then detail the key
steps of our processing workflow.

4.1.1. Tracking algorithm
Icebergs are ideal visual tracers as they provide sharp con-
trast against the water around them. However, iceberg distri-
bution is often irregular due to localized calving events, wind
and fjord currents (buoyant objects like icebergs gather in
regions of surface convergence, e.g., D’Asaro and others,
2018). Areas with numerous icebergs may occur adjacent
to open water where displacement detection typically fails
due to the absence of traceable features. OpenCV’s imple-
mentation of sparse optical flow performs well in these con-
ditions by deriving displacements for traceable features of
interest (i.e., corners of icebergs), while refraining from track-
ing in areas without such features (i.e., open water). The
resulting velocity fields are neither regular nor complete,
however, the derived fields are typically reliable and their
computation is fast. Alternative algorithms operating on
regular grids tend to yield high numbers of false velocities
in areas of open water. In our tests, we were unable to filter

Table 1. Key properties of the time-lapse cameras used in this study. Horizontal coordinates are in theWGS84 UTM coordinate system (zone
8). Elevation is measured relative to theWGS84 ellipsoid. Azimuths, measured clockwise from North, indicate the camera’s approximate look
direction

ID Model X Y Z Azimuth Frame rate Focal length Sensor resolution
m m m ° min−1 mm pixels

1 Rebel T5 661540.25 6301397.68 417.86 261 0.5 18 5184 × 3456
2 Rebel T5 661540.67 6301398.92 417.73 285 0.5 18 5184 × 3456
3 Rebel T5 661541.64 6301399.39 417.86 327 0.5 18 5184 × 3456
4 Rebel T3 661389.98 6301286.71 405.10 256 1.0 18 4272 × 2848
5 EOS 50D 661551.95 6301422.26 412.93 341 4.0 28 4752 × 3168

Fig. 2. (a) Map view of transect 2. The transverse coordinate’s origin
(labeled ‘0 m’) is located at the north end of the transect. Blue dots
show the location of selected shipborne ADCP measurements (30 s
averages from survey T32_T33, Fig. 8c). The grid along the transect
reflects the 50m × 100m grid used for spatial aggregation of velocity
measurements. The red dot shows the mooring’s location at ∼475 m
transect distance, including 100m × 100m grid (gray square) used
for spatial aggregation of image-derived velocity measurements.
(b) Shipborne ADCP-derived speeds at six locations along transect 2,
per 2 m depth levels, over the depth range 4–60 m. Speeds reflect
averages over the 32 transect surveys taken in August 2016 and
July 2017. They are perpendicular to transect 2 with negative
speeds indicating downfjord flow and positive speeds upfjord flow.
Note the signature of the outflowing plume at the 200–400 m
transect locations, with strong downfjord flow above 30–40 m
water depth.
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such false velocities reliably without coincidentally remov-
ing many correct tracking results.

The optical flow problem is described by an advection
equation,

∂I
∂x

Δx
Δt

þ ∂I
∂y

Δy
Δt

¼ � ∂I
∂t
; (1)

where I is the intensity of an individual image pixel, x and y
the image coordinates, and t the time. The two velocity com-
ponents (Δx/Δt, Δy/Δt) are typically unknown, leaving Eqn (1)
underdetermined. Accordingly, additional constraints are
needed in order to quantify the velocities. In the case of the
Lucas-Kanade method applied here (Lucas and Kanade,
1981; Bouguet, 2001), neighboring pixels are incorporated
to convert the above underdetermined problem into an over-
determined one, which is then solved by least squares mini-
mization. The problem is solvable only for corners, that is,
features that show changes in image density in both the x
and y directions (which makes the design matrix invertible).
To work reliably, this approach requires all pixels around a
corner to show congruent displacement. Also, this approach
(and optical flow in general) is sensitive to changes in illu-
mination between individual images, as shown by Eqn (1),
which relates changes in I to displacements only. Finally, dis-
placements between images need to be small (ideally less
than one pixel), as only small displacements allow the first
order Taylor expansion used for derivation of Eqn (1). For
larger displacements, coarser image versions need to be pro-
duced first, using image pyramids. Solving the optical flow
problem on the coarser images provides initial flow esti-
mates, which, in an iterative fashion, are further refined on
the higher-resolution image versions (Bouguet, 2001).
Overall, the requirements of constant illumination and
small and congruent displacements stresses the importance
of using high image frame rates. Note that feature tracking
with the Lucas-Kanade algorithm occurs in the Lagrangian
reference frame. Individual features are followed over time,
that is, over multiple images in our case.

4.1.2. Camera model
Projection from two-dimensional image coordinates (u, v) to
three-dimensional map coordinates (X, Y, Z) requires a math-
ematical camera model and a DEM of the terrain visible in
the oblique photos. Camera models of different complexities
exist. While the simplest models assume a perfect camera
geometry, others account for imperfections such as lens dis-
tortions (e.g., Brown, 1966). We opted for a camera model
with a minimal number of free parameters (Krimmel and
Rasmussen, 1986). With our focus on LeConte Bay, the
DEM is simplified to a horizontal plane (water level) that
varies in elevation with the tides.

To constrain their free parameters, camera models typic-
ally need calibration with GCPs, which are features with
known map and image coordinates. We calibrated four para-
meters for which we had initial estimates based on field mea-
surements: yaw, pitch, roll (describing the camera’s rotation),
and focal length. Given our GPS surveys, the camera’s hori-
zontal and vertical coordinates (describing translation) were
known accurately and thus not calibrated.

Our permit did not allow us to deploy GCP markers in the
cameras’ fields of view. Deriving natural GCPs from DEMs
and satellite images was not feasible, as the steep fjord walls

lack features identifiable in both satellite and oblique
images. We thus relied entirely on the waterline for camera
calibration. In the case of LeConte Glacier, the waterline has
a distinct shape, which is required for the following approach
to work. Manual digitization on aWorldView-3 satellite ortho-
image from 10 April 2016 provided the map view and thus X
and Y coordinates of the waterline. Tide measurements at
moorings and concurrent shipborne GPS surveys of the
water surface provided the waterline’s elevation (Z) at the
time of the satellite image (Appendix A). Manual digitization
of the waterline on time-lapse photos provided image coordi-
nates (u, v) for the waterline. Through least-squares minimiza-
tion, we determined the parameter combination that best
projected the waterline from the image to the map space.
The final RMSEs ranged between 5 and 20 m, with larger
RMSEs for cameras pointing downfjord, given their flat view
angle. Note that, unlike in a classic GCP-based calibration,
u–v pairs from the oblique waterline did not have pre-allo-
cated X–Y pairs on the satellite-derived waterline. Instead,
the closest X–Y pairs were determined ad hoc, after the u–v
pairs’ projection to map coordinates.

Camera servicing and other abrupt disturbances required
semi-regular recalibration of the camera models. For this,
we re-digitized the waterline on a photo that was representa-
tive of the new camera orientation and for which the tide
level was close to the tide level in the WorldView-3 image.
We refrained from automatically correcting camera move-
ments between subsequent images (Harrison and others,
1992; Messerli and Grinsted, 2015; Schwalbe and Maas,
2017), for two main reasons. Our tracking intervals are
short and corresponding camera motion small, especially
relative to the large iceberg displacements. Moreover,
because we average velocities temporally during postproces-
sing, effects of camera motion tend to cancel out given their
random origin (e.g., jitter motion in strong wind).

4.1.3. Workflow
Step 1 – Tracking on oblique imagery

Using OpenCV’s implementation of the Shi-Tomasi algo-
rithm (Shi and Tomasi, 1994), we first detect corners on gray-
scale versions of the original photographs. Corners are
intersections of two edges, where each edge reflects a
strong change in image intensity. Prior to application of the
corner detector, areas outside the fjord are masked. Next,
we track the corners across three subsequent images (e.g.,
image numbers 1–2–3), using the pyramidal Lucas-Kanade
algorithm in OpenCV (Bouguet, 2001). For quality control,
we conduct the tracking in reverse (3–2–1) and retain only
trajectories that are congruent both ways. After storing the
trajectory vertices (i.e., three x–y pairs for each trajectory),
we process the next image triplets (2–3–4, 3–4–5, etc.),
repeating the above steps. For visual quality assessments,
which are particularly meaningful in the Lagrangian refer-
ence frame, trajectories can be plotted together with the
underlying imagery (Fig. 3).

The above workflow is adapted from standard computer
vision workflows implemented in OpenCV. Several para-
meters are user-specified, for example, the minimum dis-
tance between corners (used for the Shi-Tomasi algorithm)
or the maximum number of image pyramids (used for the
Lucas-Kanade tracker). For a full list of parameters, refer to
Table 2. We identified good parameters by visually
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comparing trajectories from repeat test runs and kept them
constant over space and time.

Rather than tracking over image triplets, one could track
over image pairs (i.e., 1–2, 2–3, 3–4, etc.) or four or more
images (e.g., 1–2–3–4, 2–3–4–5, etc.). While tracking over
two images leads to the densest set of trajectories, the set
may come with a relatively large number of false trajectories
(partly because filtering by trajectory over multiple images is
not possible). Tracking over four or more images leads to
increasingly robust, yet thin velocity fields. For our photos
spaced 2 minutes apart, tracking over three consecutive
images was the best compromise between density of the vel-
ocity field and postprocessing options. For photos taken at
higher rates, tracking over four or more images may be
ideal, though this was not systematically tested.

Given the oblique camera views, pixel ground resolution
differs in the horizontal and vertical domain; it also varies
across-photo with distance of the imaged fjord portion from
the camera. Using images with 5184 × 3456 pixel resolution
(Table 1), a pixel covers 1.3 m horizontally and 17.7 m ver-
tically at a distance of 5.5 km downfjord from camera
1. 700 m away from camera 3, a pixel has a footprint that
is much smaller and less skewed, covering 0.17 m horizon-
tally and 0.34 m vertically. Variable pixel footprints affect
density of the derived corners once projected to map coordi-
nates. They also affect the accuracy of the derived trajector-
ies. With increasing distance from the cameras and
concurrently flatter view angles, tracking accuracy declines,
predominantly in the vertical direction (i.e., in up- and down-
fjord direction in case of camera 1).

Fig. 3. Lucas-Kanade-derived trajectories (red lines) overlain on a photo from camera 4 that was used for tracking. Red dots mark the
trajectories’ heads. Features detected on the first image are tracked over two more photos (2 minutes in this case, since camera 4 had a
frame rate of 1 min−1). Insets provide enlarged views.

Table 2. User-defined parameters used during image processing. Magnitudes reflect the processing of the high-rate images from camera 5.
The list excludes parameters from step 2 used for projection from image to map coordinates

Parameter description Step Magnitude and unit

Number of consecutive photos over which to track individual corners 1 3
Maximum number of corners* 1 5 × 106

Minimum distance between corners* 1 10 pixels
Moving window size* 1 10 pixels × 10 pixels
Minimum value for corner selection criterion (value between 0 and 1)* 1 0.02
Search window sizey 1 20 pixels × 20 pixels
Maximum pyramid levely 1 5
Maximum number of iterations per pyramid levely 1 25
Minimum residual motion between iterations (accuracy threshold)y 1 0.03 pixels
Maximum speed of trajectory 3 1.6 m s−1

Maximum acceleration/deceleration of trajectory‡ 3 2.5
Maximum direction change of trajectory‡ 3 70°

Time window for temporal aggregation of trajectories 3 10 min
Grid size used for spatial aggregation of trajectories 3 50 m × 50 m
Minimum number of trajectories per grid cell 3 5

*Used for the Shi-Tomasi corner detector (Shi and Tomasi, 1994).
†Used for the pyramidal Lucas-Kanade feature tracker (Bouguet, 2001).
‡Only applied above a speed threshold of 0.25 m s−1.
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Step 2 – Projection to map coordinates
Using a calibrated camera model (Section 4.1.2), the

iceberg trajectories are projected from image coordinates to
map coordinates (UTM zone 8N, Fig. 4a). With the vertices
in the metric UTM system and known time-lapse interval,
we calculate iceberg speeds.

For the projection, we approximate the fjord’s water level
by a horizontal plane that moves vertically in accordance
with the tides. Tide modeling (Appendix A) provides tide ele-
vation, and thus the elevation difference between water and
camera, at 1 minute intervals. We do not account for iceberg
heights, which biases vertical distances to the cameras
slightly. While this causes positional errors of the trajectories
and ultimately errors in speed, the errors in speed are small

(1.2% in the case of a 5 m iceberg freeboard, Appendix A).
Potentially larger positional errors are of limited concern,
as we ultimately average the trajectories over a coarse grid
(50–150 m) and because the flow field shows relatively
strong spatial autocorrelation.

Step 3 – Postprocessing
Having the trajectories in the map coordinate system

allows for additional filtering, conducted via absolute
speed (to remove particles with implausibly high speeds),
speed changes (to eliminate trajectories with implausible
acceleration/deceleration), and flow direction (to remove tra-
jectories with implausible direction changes). For simplicity,
we implement discrete thresholds and discard trajectories if
they exceed any of the user-specified thresholds (Table 2).
Because significant speed and direction changes can be
plausible at low speeds, we apply the latter criteria above a
certain speed threshold only.

After filtering, we account for camera clock drift, assuming
linear drift between service dates, for which we have GPS
screen images. We then merge the trajectories from several
cameras and aggregate them by time (i.e., hourly to daily
intervals) and space (i.e., their location within a regularly
spaced grid). During this step, a minimum number of trajec-
tories can be prescribed for each group. Ultimately, statistical
parameters (e.g., mean velocities) are calculated for the
grouped trajectories, creating new, coarsely spaced velocity
fields in the Eulerian framework (Fig. 4b). For their subse-
quent visual and quantitative interpretation, we use a suite
of scripts, for example, to create streamline plots (Fig. 4c)
or calculate flow across predefined transects.

While the final velocity fields are generally accurate, faulty
trajectories may remain unfiltered, especially under foggy con-
ditions that obscure the fjord. To mask such faulty velocity
fields, we create summary figures of the hourly tracking
results, which include the original photos, maps of the
derived trajectories and the final averaged velocity fields.
These figures are classified by an operator as trustworthy or
not (blunders are typically easy to identify visually) and the
resulting binary filter is applied to the velocity fields.

4.2. Uncertainty assessment
The uncertainty assessment aims at determining (1) how reli-
ably our method captures iceberg velocities and (2) how well
and over what depth range the iceberg velocities reflect fjord
currents. For (1), we compare spatially and temporally over-
lapping velocity fields from low-rate cameras, specifically
cameras 1 and 4. In addition, we use high-rate camera 5 to
simulate a range of time-lapse settings, with a focus on
time-lapse interval and image resolution. For (2), we
compare the camera-derived velocities to ADCP measure-
ments from vessels and moorings. Constrained by data avail-
ability and computational processing demands, the analyses
cover periods ranging from hours to months.

4.2.1. Low-rate camera intercomparisons
Comparison of velocity fields from different cameras reveals
differences due to camera configuration (e.g., frame rate, loca-
tion, sensor properties) and camera model calibration.
Because we apply the same tracking algorithm throughout
the comparisons, potential algorithm-specific limitations are
not captured. Our comparison focuses on cameras 1 and 4,
which ran simultaneously in April 2017 and July–August

Fig. 4. Key processing products. Colors represent speeds and are
identical across panels. UTM-projected iceberg trajectories,
including underlying photos from cameras 1–4. The trajectories
represent a 2 minute interval (22:30–22:32 UTC) on 16 September
2017. Note that Fig. 3 shows the corresponding trajectories in the
image coordinate system (camera 4 only). (b) Mean velocities after
temporal aggregation over an hour (22:00–23:00 UTC) and spatial
aggregation over a 150 m× 150 m grid. (c) Streamline plot generated
from hourly averaged velocities.
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2017, over a total of 35 days. The different sampling rates,
locations and sensor properties of the cameras (Table 1)
make them the best choice for comparison. The velocities of
camera 4 may serve as a benchmark, given the camera’s
higher frame rate and better field of view (steeper view angle).

We compare the velocities across transects 2–4 (Fig. 1d). To
arrive at interpretable results, spatial and temporal aggregation
of the original trajectories is required. To aggregate the trajec-
tories spatially, we establish grids with 50m × 100m cell size
along the three transects (Fig. 2). Temporally, we aggregate
over 2 hour periods. For the aggregated trajectories, we calcu-
late iceberg speeds perpendicular to the course of the transects,
which facilitates subsequent comparisons (two-dimensional
velocities are reduced to speeds) without losing critical infor-
mation.Ultimately,wecompare the results (i.e., 25thquantiles,
medians, 75th quantiles) from the two cameras visually and
quantitatively (through scatterplots and linear regression).

The choice of time periods and areas used for temporal
and spatial aggregation is a compromise between too short/
small (too few measurements) and too long/large (loss of rele-
vant information). Tests suggested 2 hour periods and 50 m ×
100 m grids as a good compromise. For consistency, we use
these exact or similar parameters throughout all our assess-
ments, including camera to ADCP comparisons.

4.2.2. High-rate camera simulations
The low-rate camera comparisons are useful for assessing
agreement among velocity fields from different cameras.
Identifying the underlying causes of these differences,
however, may be speculative, as the cameras differ in several
properties, which may all affect the results. Using one camera
to simulate different time-lapse settings avoids this problem,
as the settings (e.g., frame rate) can be changed individually.
High-rate camera 5 is ideal for such simulations because it
sampled at a rate of 4 min−1 and captured the dynamic
portion of the fjord close to the glacier face, where strong cur-
rents occur due to plume dynamics and calving activity.

Wehere vary twoproperties: time-lapse interval (15–240 s)
and spatial resolution of the input images (40–100% scaling).
For each spacing/resolution combination, we run the full
image processing workflow (Section 4.1.3). To reduce com-
putational and data storage demands, we focus on a 4 hour
period deemed representative of summer conditions. We
chose a period on 11 May 2017 (22:00–02:00 UTC) that
featured strong currents in the outflowing plume, occasional
calving events, and generally favorable weather for tracking
(overcast with brief periods of sunshine). To assess the
simulation results, we compare velocity fields from different
scenarios visually. In addition, we compare speeds across
transect 1 (Fig. 1e) quantitatively, using the approach intro-
duced in Section 4.2.1.

4.2.3. Comparison with shipborne ADCPmeasurements
To assess the agreement of iceberg velocities and actual near-
surface currents, we compare our image-derived velocities
with concurrent shipborne ADCP data (Section 3.2). From
the ADCP data, we use the uppermost 11 depth levels, repre-
senting 2 m bins between 4 and 24 m water depth.
Incorporating several depth levels allows us to evaluate
whether the match between image- and ADCP-derived vel-
ocities varies with depth.

We aggregate the image- and ADCP-derived velocities by
space and time. Given their sparseness, we include all

ADCP-derived velocities regardless of their lateral distance
from the transect, while considering image-derived velocities
detected within 50 m × 100 m grid cells (Fig. 2). For temporal
boundaries, we include all image-derived velocities detected
within 1 hour of the ADCP survey’s halftime, yielding a
2 hour period in total. For the aggregated velocities, we
compute speeds across transect 2 and compare the corre-
sponding statistics (25th quantiles, medians, 75th quantiles)
visually and quantitatively.

4.2.4. Comparison with mooring ADCPmeasurements
Comparing our image-derived velocities to velocities from
the mooring-mounted ADCP allows us to extend the com-
parison period to several weeks and additional depth
levels. For the comparison, we select image-derived trajec-
tories within a 100 m × 100 m grid cell centered at the
mooring location and rotated parallel to transect 2 (Fig. 2).
Following the above comparisons’ methodology, we
compare speeds perpendicular to the course of transect 2,
temporally aggregated over 2 hour periods. We also
compare the actual flow azimuths, which provides add-
itional insights into the agreement of the two datasets.

5. RESULTS AND DISCUSSION

5.1. Uncertainty assessment

5.1.1. Low-rate camera intercomparisons
A wide range of ice and current conditions prevailed during
the 35 day comparison. In early April 2017, the fjord was
choked with ice, while only a few icebergs were present in
July 2017. Overall, currents were predominantly downfjord,
as indicated by mostly negative speeds across the transects
(Fig. 5).

Generally, we find good agreement among the speeds
derived from cameras 1 and 4. For transect 2 (Fig. 5,
Table 3), comparison of the two datasets yields a mean abso-
lute error (mae) of 0.02 m s−1 and a bias of –0.02 m s−1

(camera 4 more negative). Moreover, the speed datasets
capture 88% of each other’s variability (r2= 0.88, p < 0.01).
In the case of abundant icebergs and low speeds (e.g., on 20
April 2017, Fig. 5c), the speeds from the two cameras are
essentially identical. However, camera 4 outperforms
camera 1 when iceberg speeds are high (e.g., on 18 July
2017, Fig. 5d), as illustrated by fewer measurement gaps,
fewer outliers, and smaller error bars. In the case of the
highest iceberg speeds (between –0.4 and –0.6 m s−1),
camera 4 provides speeds that are higher andmore consistent
than those from camera 1 (note the increasing number of out-
liers for camera 1 in Fig. 5k). In these cases, camera 1 (0.5
min−1 sampling rate) likelymissesmore of the fastest icebergs,
which results in median velocities lower than those from
camera 4 (1 min−1 sampling rate). The fact that camera 4
detects three times more trajectories, with only double the
sampling rate, supports this conclusion. For reference, the
comparison between cameras 1 and 2 (rather than 4) at tran-
sect 2 yields an r2 of 0.96 and a 0 m s−1 bias (Table 3,
Fig. S3). This better agreement is likely explained by the two
cameras’ similar configurations (i.e., identical sampling rates
and sensor properties, and essentially identical locations,
Table 1) and suggests consistent calibration of the camera
models.

Along transects 3 and 4, the agreement between speeds
derived from cameras 1 and 4 is excellent, with r2 values
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of 0.96 and zero biases (Table 3, Figs S4, S5). Speeds across
transects 3 and 4 are generally lower than those at transect 2,
facilitating the tracking task. Additionally, transects 3 and 4
lie downfjord from transect 2 and thus farther away from
the cameras, where moving icebergs cause smaller displace-
ments on the photos. Lower iceberg speeds in the fjord and
smaller displacements on the photos may benefit camera 1
(0.5 min−1 sampling rate) more than camera 4 (1 min−1

sampling rate), explaining the improved performance of
camera 1 relative to camera 4. While tracking tends to
become more robust with increasing distance from the
cameras, potential tracking accuracy decreases, especially
with flattening view angles. Because we use one common
tracking algorithm and cameras with similar view geometries
(with respect to transects 3 and 4), our comparison likely fails
to describe decreasing tracking accuracy, which needs to
be borne in mind for future analyses.

Overall, this comparison confirms the advantage of using
high frame rates, especially for areas close to the cameras
and subject to high iceberg speeds. With higher frame
rates, both iceberg displacements and lighting changes
decrease, which facilitates tracking by means of optical flow.

5.1.2. High-rate camera simulations
Our simulations with high-rate camera 5 on 11 May 2017
capture the fjord in a dynamic state. A strong outflowing
plume was present on the south side of the fjord, with
iceberg speeds up to 1 m s−1. To the north of the plume, a

clockwise rotating eddy was present, mostly with iceberg
speeds between 0.1 and 0.3 m s−1. Intermittent calving
events caused very fast ice movement.

Simulations with five time-lapse intervals (15, 30, 60, 120
and 240 s, corresponding to frame rates of 4, 2, 1, 0.5 and
0.25 min−1) yield velocity fields with markedly different
degrees of completeness (Fig. 6). The velocity fields from
the 15 s scenario show the most comprehensive fjord cover-
age (Fig. 6a). Visual comparison of the original trajectories to
their underlying oblique photos confirms best tracking per-
formance on images spaced 15 s apart. We find no obvious
change in the velocity fields when decreasing the time-
lapse interval to 30 s, except in the immediate plume area,
which occurs because the algorithm begins to miss the
fastest icebergs (Fig. 6b). The velocity field completeness
begins to decline with the 60 s scenario, first across the
plume (Figs 6c, d) and then across the remainder of the
fjord (Fig. 6e). Although scenarios with lower frame rates
provide partial velocity fields only, the remaining portions
appear valid overall, especially when averaged over extended
time periods (e.g., 1 hour rather than 10 minutes, Fig. S6).

Quantitative comparison of speeds across transect 1
confirms the findings from the visual analysis and supports
results from Section 5.1.1 regarding biases in the velocities
from low-rate cameras. While the speeds from the 30 and
15 s scenarios are nearly identical (Fig. 7a), fast flow tends
to be underestimated towards sparser time-lapse intervals
(Figs 7b–d). The highest downfjord speeds (approximately
−0.5 m s−1) are missed entirely in the 120 and 240 s scenarios.
Underestimation scales with time-lapse interval, as indicated
by increasing slopes of the linear fits in Fig. 7.

Simulations with different resolution input images (100,
80, 60 and 40% of the original size) yield nearly identical vel-
ocity fields (Fig. S7). Even with input images that are 40% of
the dimension of the original image, the tracking results show
minimal change. This is likely related to the very high reso-
lution of our original photographs, 4752 × 3168 pixels in
the case of camera 5. In the area of the plume, this corre-
sponds to a ground-resolution of ∼20 cm. Hence, even
small iceberg displacements exceed several pixels in the

Fig. 5. (a–i) Camera 1-derived speeds (0.5 min−1 frame rate) vs camera 4-derived speeds (1 min−1 frame rate) measured along transect 2, for 9
selected days (Fig. S2 features additional days). Each panel represents the 20:00–22:00 UTC time period for 1 day. The inset images taken from
camera 4 show the fjord at 21:00. Abscissas reflect distance along the transect and ordinates speed perpendicular to the transect (negative
speeds indicate downfjord flow). Dots describe the median speeds per 50 m bin; error bars represent the corresponding first and third
quartiles. For better readability, the dots are shifted slightly to the right (camera 1) and to the left (camera 4). (k) Scatterplot comparing
camera 1- and camera 4-derived speeds including statistical parameters. The dots represent median speeds per 50 m bin; r and ‘mae’
correspond to the correlation coefficient and mean absolute error, respectively.

Table 3. Statistical parameters derived from low-rate camera inter-
comparisons along transects 2–4. r is the correlation coefficient and
‘mae’ corresponds to the mean absolute error

Transect Cameras r bias (m s−1) mae (m s−1)

2 1 vs. 4 0.94 –0.02 0.02
2 1 vs. 2 0.98 0.00 0.01
3 1 vs. 4 0.98 0.00 0.01
4 1 vs. 4 0.98 0.00 0.01
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original images, which are handled by the Lucas-Kanade
tracker through image pyramids (reduced size versions of
the original image, Section 4.1.1) and potential additional
smoothing of the input imagery. Although the Lucas-
Kanade tracker refines the final displacements with the
highest resolution image version, these corrections must be
small in our case. Hence, for tracking purposes, reduced
size images may be sufficient, especially if the perimeter
covered is close to the camera.

Overall, these simulations confirm frame rates as the key
factor affecting tracking results. High frame rates are par-
ticularly important in the case of high/divergent iceberg
speeds and rapid changes in lighting conditions. For set-
tings similar to those at LeConte Glacier, 15–30 s time sep-
aration are required for best tracking results. Sixty second
time separation still provides good velocity fields, though
with occasional gaps and potential underestimation of
high speeds. The maximum legitimate time separation is
120 s, although the resulting velocity fields miss the
fastest portion of the plume and may underestimate
higher speeds in general.

When using high-resolution cameras similar to ours
(Table 1), image resolution can be reduced by 50%
without notable losses in the quality of the velocity fields.
Reducing the image size by half allows for increasing the
frame rate by about a factor of 4 (if the frame rate is limited
by storage space). However, note that spatial resolution
may remain important for camera model calibration by sim-
plifying identification of GCPs.

Fig. 6. Results from simulation runs at camera 5, varying the time-lapse interval from (a) 15 s to (e) 240 s. The velocity fields reflect averages
over 10 minutes (here 23:50–00:00 UTC) and a 50 m × 50 m grid. Panel (e) includes the location of transect 1, used for quantitative assessment
of simulation results (Fig. 7). The photograph in panel (f), captured by camera 5, shows the fjord at 23:50 UTC.

Fig. 7. (a–d) Speeds from four time-lapse interval scenarios (30–240 s)
vs speeds from the reference scenario (15 s time separation). Dots
represent hourly median speeds perpendicular to transect 1, per
50 m× 100 m grid cell. n reflects the total number of measurements
compared, 84 being the maximum (4 hours × 21 grid cells). The red
line represents the linear fit to the data, with magnitude of slope and
intercept annotated in the panel. The gray line is the 1:1 line. Note
that the zero biases in panels (b)–(d) result from mutual
compensation of underestimated downfjord and upfjord flow.

10 Kienholz and others: Tracking icebergs with time-lapse photography and sparse optical flow, LeConte Bay, Alaska, 2016–2017



5.1.3. Comparisonwith shipborneADCPmeasurements
For both campaigns (August 2016 and July 2017), ADCPmea-
surements show fast downfjord speeds in the northern portion
of transect 2, reaching from the water surface to 30–40 m
depth (Fig. 2b). At 200 m transect distance, downfjord veloci-
ties exceed 0.4 m s−1 above 20 m depth (average over 32
transect surveys), reaching up to 0.6 m s−1 during selected
transect surveys. These downfjord speeds at shallow depths
abate toward the southern portion of the transect and
beyond ∼600 m, flow is predominantly towards the glacier.
This pattern reflects the outflowing plume and an adjacent
eddy with counterflow. Counterflow is also observed
beyond 40–50 m water depth. Speed patterns are similar
across the 11 ADCP levels used for this comparison (4–24 m),
though magnitudes tend to decrease with depth. Here we

illustrate the comparison with the 6 m ADCP measurements
(Fig. 8); comparisons to other depth levels yield similarly
looking figures (Figs S8–S11).

Overall, our image-derived speeds capture the speed pat-
terns by the ADCPwell, including peak speed at ∼200 m tran-
sect distance and decreasing speeds towards the southern
transect portion (Figs 8a–f). In fjord portions with dense ice
cover (inaccessible by vessel), the image-derived speeds
actually extend the ADCP-derived measurements.
Quantitative comparison of image- and ADCP-derived
speeds confirms a statistically significant correlation (e.g.,
r= 0.76 for the 6 m ADCP-derived speeds, Fig. 8g). While
biases are zero for the shallowest depth levels (4–8 m), they
increase beyond 8 m, along with increasing mean absolute
errors and decreasing correlation coefficients (Table 4).
Despite the good overall match, scatter is considerable, indi-
cated by mean absolute errors of at least 0.09 m s−1. At low
speeds, relative errors can exceed 100%, which needs to
be borne in mind especially when interpreting individual
measurements (relative errors increase towards lower
speeds although absolute errors tend to decrease).

Several outliers show image-derived speeds of zero while
concurrent ADCP-derived speeds are relatively high (red dots
in Fig. 8g). Inspection of time-lapse images indicates that
these zero velocities are not due to tracking errors, but to
two large icebergs stranded in the shallow portion of transect
2 (between 0 and 150 m, at water depths < 30 m). Note that
stranded icebergs are not generally a problem in LeConte
Bay. Indeed, the above comparison with ADCP data suggests
that most of the tracked icebergs have keel depths shallower
than ∼10–12 m, which agrees with field observations. Most
icebergs observed are only a fewmeters in width and stability
considerations suggest that icebergs tend to be shallower
than they are wide (e.g., Wagner and others, 2017).

Fig. 8. (a–f) Image- vs 6 m ADCP-derived speeds along transect 2. Each panel shows one ADCP survey with corresponding speeds derived
from cameras 1 and 2 (a–e) and 1, 2 and 4 (f). Panels (a–c) represent three selected surveys from the August 2016 campaign, (d–f) three selected
surveys from the July 2017 campaign. Inset images taken from camera 1 show fjord conditions halfway through the ADCP survey. Times show
the start and completion times of the ADCP surveys. Gray dots show individual ADCP measurements. Green and blue dots describe median
speeds per 50 m × 100 m bin; corresponding error bars show the first and third quartiles. For better readability, dots and error bars are shifted
slightly to the left (ADCP-derived speeds) and to the right (image-derived speeds). Areas beyond 700 m (gray vertical line) are only visible from
camera 4, which was operational only during ADCP surveys on 13 July 2017. (g) ADCP- vs image-derived speeds, with corresponding
statistical parameters. Semi-transparent black dots represent median speeds per 50 m × 100 m bin, collected from 32 ADCP surveys. Red
dots indicate outliers caused by two icebergs stranded on 12 and 14 August 2016, yielding image-derived speeds of zero. The gray line is
the 1:1 line.

Table 4. Statistical parameters derived from the comparison
between image-derived and shipborne ADCP-derived speeds, for
11 ADCP depth levels at transect 2. The speeds compared are per-
pendicular to transect 2. Negative biases indicate that the image-
derived speeds are faster than the ADCP-derived speeds

Depth (m) r bias (m s−1) mae (m s−1)

4 0.73 0.00 0.09
6 0.76 0.00 0.09
8 0.76 0.00 0.09
10 0.76 –0.01 0.09
12 0.75 –0.01 0.09
14 0.76 –0.01 0.09
16 0.74 –0.02 0.10
18 0.72 –0.03 0.10
20 0.71 –0.03 0.10
22 0.71 –0.05 0.10
24 0.71 –0.05 0.10
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5.1.4. Comparison with mooring ADCPmeasurements
Over this long-term comparison (10 May–25 August 2017),
the ADCP-derived speeds (2 hour averages, perpendicular
to transect 2) are predominantly negative at shallow depths
(above ∼40 m), indicating downfjord currents. Speeds
reach up to –0.35 m s−1 at the 12–16 m depth levels (mean
speeds= –0.08 m s−1, Fig. S1) and generally decrease with
depth, similar to observations from previous comparisons.
The 40 m depth level marks the transition zone where both
downfjord and upfjord flow occur (Fig. S1). At depths
below ∼48 m, flow is predominantly upfjord.

Despite considerable scatter, there is a significant
positive correlation between the image- and ADCP-derived
speeds for the uppermost depth levels (Fig. 9, Table 5). The

correlation is highest for the 12 m depth level, where
the image-derived speeds explain 26% of the variability in
theADCP-derived speeds (r= 0.51,p<0.01). The correlation
declines with ADCP depth level, reaching an r value of 0.16 at
24 m. Beyond 24 m, correlations lose significance (p> 0.01)
temporarily (Fig. S12). Significant (though weak) negative
correlation starts at 48 m depth, implying that increasing
downfjord speeds at the surface correlate with increasing
upfjord speeds at depth.

The highest correlation for the 12 m depth level coincides
with the smallest bias and mae values (0 and 0.06 m s−1,
Table 5), identifying 12 m as the best matching depth level.
Analyzing the actual distributions of speed differences (histo-
grams in Fig. 9) yields the most favorable error distribution for
the 12 m depth level, supporting this finding. Note that the
speed differences follow Gaussian distributions closely,
which is expected given many (random) error sources affect-
ing the two velocities compared (see next section).

In line with the previous observations, the flow azimuths of
image- and mooring-derived velocities show the best agree-
ment for the shallowest depths (Fig. 10). Interestingly, the
average azimuths are shifted by ∼15°, indicating that the
image-derived azimuths point in a more westerly direction
than the mooring-derived azimuths. This difference likely
quantifies azimuthal change in the unmeasured currents
above 12 m depth, which are a key control on the predomin-
antly small icebergs in LeConte Bay. Due to the 15° azimuth
difference, the ADCP-derived velocities pass transect 2 more
orthogonally than the corresponding image-derived veloci-
ties, which affects the projected speeds analyzed in Fig. 9
and Table 5. Upon projection of same-magnitude velocities,
the 15° azimuth difference causes an artificial speed differ-
ence of 8%, underestimating the image-derived speeds rela-
tive to the ADCP-derived speeds. In the case of the 12 m
depth level, considering this difference yields a speed bias
of –0.01 m s−1 rather than the 0.0 m s−1 given in Table 5.
This negative bias is plausible as the downfjord currents
above 12 m water depth (which control small icebergs)
tend to be stronger than those at 12 m (Fig. 2b).

5.1.5. Agreement of iceberg speeds and fjord currents
Our assessments suggest the best agreement (smallest biases,
smallest mae values) for the uppermost ADCP depth levels
(∼12 m and above), which is plausible given the prevalence
of small icebergs in LeConte Bay. Icebergs are typically only
a few meters wide and thus expected to have most of their

Fig. 9. (a–d) Comparison of image-derived velocities (from
cameras 1, 2 and 4) and corresponding mooring-mounted ADCP
measurements for depth levels 12, 16, 20 and 24 m. Each of the
308 measurements represents a 2 hour period between 10 May
and 25 August 2017. Scatterplots (left panels) compare the speeds
measured at the annotated mooring depths to the image-derived
speeds. Speeds are perpendicular to transect 2, with negative
values indicating downfjord flow. Colors represent point density,
with lighter colors indicating higher numbers of overlapping
points. Histograms (right panels) show the corresponding
frequency distributions of speed differences (image-derived
speeds – ADCP-derived speeds), including Gaussian fits. Bin size
is 0.05 m s−1. μ and σ values represent means and standard
deviations. Note that the 12 m depth level features the most
favorable error distribution. A figure with additional depth levels is
given in the Supplementary Material (Fig. S12).

Table 5. Statistical parameters derived from the comparison
between image-derived speeds and speeds from the mooring-
mounted ADCP. The speeds compared are perpendicular to the
course of transect 2. The comparison covers eight ADCP depth
levels. ‘n.s.’ marks non-significant correlations. Figs 9 and S12
shows the corresponding scatterplots

Depth (m) r bias (m s−1) mae (m s−1)

12 0.51 0.00 0.06
16 0.36 0.00 0.07
20 0.27 –0.01 0.08
24 0.16 –0.01 0.08
28 n.s. –0.02 0.08
32 n.s. –0.02 0.09
40 n.s. –0.06 0.10
48 –0.26 –0.10 0.11
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surface area above ∼12 m water depth, so that they respond
primarily to the shallowest near-surface currents. Note that
the scatter emerging from the iceberg speed vs fjord current
comparison is not unexpected. It is partly caused by variabil-
ity in iceberg size and shape, combined with variability in
currents (i.e., variable vertical shear). Wind, affecting the
subaerial iceberg portion, may further contribute to the
scatter.

The design of our comparisons may reduce agreement
between iceberg speeds and fjord currents artificially. Due
to spatial and temporal aggregation, which is a prerequisite
for comparison of ADCP and image-derived speeds, the
image- and ADCP-derived velocities do not necessarily
represent identical spaces and times (e.g., they may be
taken up to 2 hours apart). Also, while icebergs integrate cur-
rents between water surface and their keels, we compare the
image-derived iceberg velocities to velocities from distinct
2 m (600 kHz ADCP) and 4 m (300 kHz ADCP) ADCP
depth bins. Integration of ADCP-derived speeds over
several depth bins (e.g., 4–8 m), including extrapolation of
vertical shear to the water surface, may improve the agree-
ment, though this is not tested here. Finally, both image-
derived iceberg speeds (Table 3) and ADCP-derived fjord
currents come with their own uncertainties, effectively redu-
cing agreement between true iceberg speeds and fjord cur-
rents. In the absence of perfect reference data, tracking
algorithms and comparison methods, our numbers for the
agreement between iceberg velocities and fjord currents

Fig. 10. (a–d) Same as Fig. 9, but showing frequency distributions of
azimuth differences (azimuth of image-derived velocity – azimuth of
ADCP-derived velocity at annotated depth). Average north-based
azimuths are annotated for the observations compared, with αt
reflecting iceberg tracking-derived azimuths and α12–α24 ADCP-
derived azimuths. Red error bars indicate the distributions’ three
quartiles; the interquartile range is also annotated as ‘iqr’.
Quantiles are chosen given the distributions’ non-Gaussian shape.

Fig. 11. Streamlines derived from 12 selected daily average velocity fields. The rows represent 3 consecutive days in (a–c) April 2016, (d–f)
August 2016, (g–i) May 2017 and (j–l) July 2017. Inset photos taken from camera 1 reflect fjord conditions on each day. The 150 m × 150 m
grid in the background indicates data coverage and resolution of the original velocity fields. Panels a–i lack data from camera 4, which
explains their incomplete fjord coverage.
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correspond to lower bound estimates. Note that these
numbers are not necessarily transferable to fjord portions
with flat camera view angles, where image-derived velocities
tend to be less accurate. The numbers are also not transfer-
able to other fjords, which may have different iceberg size
distributions and camera view geometries.

5.2. Final products and initial interpretations
Processing the full image dataset provides a detailed picture
of fjord circulation over the 18 month study period. The tem-
poral resolution of our final velocity field products ranges
from hourly to daily (i.e., 6–12 hourly) in the case of the
low-rate cameras. The corresponding spatial resolution is
150 m × 150 m. For the fields from high-rate camera 5
(focused on the terminus area), temporal resolution ranges
between 1 minute and 1 hour, with a spatial resolution of
50 m × 50 m. With a complete workflow in place, other cus-
tomized velocity fields can be generated automatically.
Doing so, one needs to consider that increasing the velocity
fields’ temporal resolution may compromise their spatial
completeness, which relies on the presence of icebergs at
given times.

Figure 11 features a selection of streamline plots generated
from daily average velocity fields. The streamline plots show
dominant downfjord velocities, as expected for a fjord with
estuarine circulation, and as confirmed by our ADCP mea-
surements. Starting at the upwelling plume at the glacier ter-
minus, the outflowing currents take a direct path downfjord.
Up to four large eddies appear to the north (turning clock-
wise) and south (turning counter-clockwise) of the plume,
controlled by the interplay of plume and fjord geometry.
Despite persistent flow patterns, the variability of eddy

sizes and shapes is considerable on a day-to-day basis, illus-
trating the highly dynamic nature of the fjord. The ∼500 daily
average streamline plots indicate that the upwelling plume
was located on the south side of the terminus throughout
the study period. This differs from 2012, when the plume
was located on the north side (Motyka and others, 2013).

Figure 12, showing daily average flow across transects
1–4, provides a compact visualization of the flow patterns
over the study period. Consistent color patterns during the
summer indicate relatively persistent current patterns, likely
controlled by ample glacier runoff. Highest flow speeds are
typically found in mid to late summer (late July to
September 2017), reaching and occasionally exceeding
0.5 m s−1 on a daily average. The circulation patterns are
more variable during the winter season, possibly due to
strong wind events and lower plume activity. Between 25
February and 12 April 2017, ice mélange covered the fjord,
resulting in minimal iceberg displacement during that time.

Extending from these initial interpretations, we are cur-
rently analyzing the velocity data in tandem with other
field data. This work seeks to identify the key factors
driving fjord circulation by correlating the derived velocities
with forcing such as tides, wind and glacier runoff. In add-
ition, forthcoming hydrodynamic modeling efforts will use
our velocity fields as constraints.

6. CONCLUSIONS
We developed a workflow to track icebergs in proglacial
fjords, using oblique time-lapse imagery and the Lucas-
Kanade optical flow algorithm. We applied the workflow to
>400 000 time-lapse photos taken at LeConte Bay, Alaska,
between spring 2016 and fall 2017. The derived velocity

Fig. 12. (a–d) Time series of daily average speeds across transects 1–4. The inset map in (c) shows the fjord along with transect locations.
Colors reflect the speed perpendicular to the transect, with blue tones (negative speeds) indicating downfjord motion. Light gray colors
indicate no data (due to camera failure, snow cover or fog). The ordinate reflects distance along the transect, with 0 m distance
corresponding to the north end of the transects. Speeds are calculated for bins 50 m wide. For better readability, we show data from 2017
only. In the case of transect 1, velocities between ∼800 m (dashed line in panel a) and 1000 m distance are not trustworthy because they
cover the outflowing plume close to the glacier terminus, where the 0.5 min−1 time-lapse frame rate was too low to capture the high velocities.
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fields provide a spatially and temporally comprehensive
picture of iceberg motion, which, given the prevalence of
small icebergs in LeConte Bay, represents near-surface fjord
circulation. This is confirmed by comparing image-derived
velocities to in-situ ADCP data, which yields best agreements
for depth levels above ∼12 m. While the 0.5 min−1 camera
frame rates used for our 18 month survey were sufficiently
high in many cases, the fastest icebergs/currents were
missed, especially in areas close to the cameras. Tests with
a range of camera frame rates suggest ideal rates of at least
1 min−1 for settings similar to LeConte Glacier. Such high
frame rates are feasible with high capacity storage cards,
especially since image spatial resolution (and thus size) is
of secondary importance for the tracking algorithm.

Application of our workflow to other fjords will be suc-
cessful if iceberg concentrations are sufficiently high. The
icebergs’ size distribution will affect the interpretation of
the resulting velocity fields, and only in fjords with predom-
inantly small icebergs will iceberg motion reflect near-
surface currents reliably. In addition to the camera frame
rates, camera placement will be crucial for best results. Too
low of an elevation leads to unwanted (flat) viewing angles,
while too high of an elevation causes problems with clouds
and fog. Ideally, the region of interest should be covered
by at least two cameras for redundancy, and to allow for
advanced filtering of the derived trajectories. If possible,
the cameras should be deployed at locations spaced
several hundred meters apart. Cameras that are close
together have similar fields of view and tend to be affected
by the same problems (snow cover, glare, etc.), which
hampers advanced filtering of the tracking results and
camera intercomparisons in general. Additionally, we rec-
ommend the use of shutterless cameras (to reduce the risk
of failure), fixed focal length lenses (to ensure focal length
does not change when servicing the cameras) and accurate
GPS timing (for comparing photos from multiple cameras,
photos and satellite imagery, or photos and GPS tracks of
objects visible in the photos). Precisely synchronized
timing together with dedicated camera placement would
also enable stereoscopic analysis of iceberg geometry.

Though useful currently, our code has room for improve-
ment and further development. An initial focus should be on
developing a scheme to filter out cloudy scenes (currently
done manually) and advanced filtering of faulty trajectories
(currently done with fixed thresholds). Advanced filtering
should incorporate data from multiple cameras rather than
treating the data from each camera separately, as is done cur-
rently. Implementing a more sophisticated camera model is
another priority, especially with regard to the use of
cameras with larger lens distortions. Finally, it would be
useful to implement alternative tracking algorithms, for
example, based on sparse implementation of image match-
ing (e.g., Schwalbe and Maas, 2017) or SIFT-like techniques
(e.g., Lowe, 2004; Rublee and others, 2011). Algorithm per-
formance should then be assessed with regard to the iceberg
tracking task, thereby focusing on algorithm robustness,
accuracy and computational demand.
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The code for the tracking workflow is available at https://
bitbucket.org/ckien/iceberg_tracking/.
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APPENDIX A. CALCULATION OF THE ΔZ TIME
SERIES AND CORRESPONDING UNCERTAINTIES
The elevation difference between camera and icebergs (Δz) is
required to project trajectories from image to map coordi-
nates. Δz is affected by both tides and iceberg height. Here,
we account for tides but lack stereo imagery to account for
iceberg height. Our Δz time series thus reflects the elevation
difference between camera and water surface.

Our tide calculations are based on pressure measurements
from moorings deployed in upper LeConte Bay. Between
1 April and 10 August 2016 (131 days), a SBE37 MicroCAT
recorded pressure at ∼60 m depth. These pressure records
were converted to depths and used as input for the Pytides
tide model (https://github.com/sam-cox/pytides), which pro-
vided tide elevations at 1 minute intervals over the entire
period of interest (March 2016–September 2017). The corre-
sponding frequency distribution shows a bimodal distribution
of tide levels with peaks at –1.2 and 1.2 m, and minimum/
maximum tides at –3.8 and 3.6 m (Fig. 13). To check the
quality of the tide prediction, we compared the modeled
tides to tide measurements from a second mooring, deployed

over 264 days from 15 August 2016–6 May 2017. The com-
parison of the two elevation time series yielded a normal distri-
bution with a mean (μ) of 0.0 m and standard deviation (σ) of
0.21 m, confirming high quality of the tide prediction.

Our camera elevations are known relative to the WGS84
ellipsoid, with a vertical uncertainty (1 σ) of 0.25 m (they
were surveyed using a geodetic-quality Trimble NetRS GPS).
To prevent biases in our Δz time series, tide elevations must
be converted from orthometric to ellipsoidal heights. A
geoid model could be considered for conversion, however,
geoid models come with large uncertainties in the LeConte
Bay area (e.g., 8.3 m (95% confidence interval) when using
GEOID 12B (https://www.ngs.noaa.gov/GEOID/GEOID12B)).
To avoid such uncertainties, we ran a Trimble NetRS GPS
on our vessel while conducting multi-day surveys in
LeConte Bay in May 2017. The difference between the GPS-
derived water level (1 minute averages) and corresponding
modeled tide elevations was –0.13 m (μ) and 0.11 m (σ).
Subtracting 0.13 m from the modeled tide elevations resulted
in the tide elevation time series relative to the WGS84 ellips-
oid, which we then subtracted from the camera’s elevation
for the final Δz time series.

To estimate a combined uncertainty for the Δz time series,
two uncertainties have to be considered in addition to the
uncertainties introduced above. First, the vertical distance
between GPS antenna and camera focal point is known
with an uncertainty of approximately ±0.05 m, and thus
adds a potential bias to the random uncertainty from the
actual GPS processing (±0.25 m). The elevation difference
between the boat’s GPS antenna and the water is known
with an uncertainty of ±0.1 m. This potential bias adds to
the random uncertainty of ±0.11 m. Combining these uncer-
tainties in a Monte Carlo fashion (10 000 runs) yields a
normal error distribution, with μ= 0.0 m, σ= 0.35 m, and
5/95% percentiles of –0.58 and 0.58 m. These numbers
suggest that the true Δz lies within ±58 cm of the modeled
Δz (90% confidence). The corresponding positional error of
a projected feature ep can be approximated as follows:

ep ¼ d � ez
Δz� ez

; (A1)

where d is the feature’s horizontal distance from the camera,
ez the error in elevation, and Δz the camera’s elevation above
water level. According to Eqn (A1), ep linearly increases with

Fig. 13. Frequency distribution of modeled tide levels during the
period 20 March 2016–30 September 2017. The two peaks of the
bimodal distribution are at –1.2 and 1.2 m, respectively. 90% of
the tide elevations lie between –2.5 and 2.4 m. Reference surface
is the mean tide level calculated over the study period.
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the feature’s distance from the camera. With a Δz of 420 m
and ez values of –0.58 and 0.58 m, this equation yields abso-
lute positional errors between –1 and 1 m in the closest fjord
portion (700 m horizontal distance from the cameras). The
positional error lies between –7 and 7 m in the fjord portions
farthest away from the cameras (at a horizontal distance of
5500 m). Given the linear relationship, ep corresponds to
∼0.14% of d for this particular ez–Δz combination. The
same fraction quantifies the error in speed, which, lying
between –0.14 and 0.14%, remains negligible.

Based on Eqn (A1), we can also assess projection and
speed errors that result from neglecting iceberg heights.
Assuming a large freeboard of 5 m (ez= 5), the positional
error in the closest fjord portion (700 m horizontal distance)
equals ∼8.5 m while reaching ∼66.5 m at 5500 m horizontal
distance from the cameras. In the case of ez= 5 m and Δz=
420 m, apparent speeds are ∼1.2% faster than their true
equivalents. Note that the fractional error in speed varies
approximately linearly with ez (e.g, it is reduced to ∼0.6%
in the case of ez= 2.5 m and Δz= 420 m).
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